Insira um problema...
Álgebra linear Exemplos
Etapa 1
Defina o argumento em como maior do que para encontrar onde a expressão está definida.
Etapa 2
Etapa 2.1
Some aos dois lados da desigualdade.
Etapa 2.2
Pegue a raiz especificada de ambos os lados da desigualdade para eliminar o expoente no lado esquerdo.
Etapa 2.3
Simplifique a equação.
Etapa 2.3.1
Simplifique o lado esquerdo.
Etapa 2.3.1.1
Elimine os termos abaixo do radical.
Etapa 2.3.2
Simplifique o lado direito.
Etapa 2.3.2.1
Simplifique .
Etapa 2.3.2.1.1
Reescreva como .
Etapa 2.3.2.1.1.1
Fatore de .
Etapa 2.3.2.1.1.2
Reescreva como .
Etapa 2.3.2.1.2
Elimine os termos abaixo do radical.
Etapa 2.3.2.1.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.4
Escreva em partes.
Etapa 2.4.1
Para encontrar o intervalo da primeira parte, identifique onde o interior do valor absoluto é não negativo.
Etapa 2.4.2
Na parte em que é não negativo, remova o valor absoluto.
Etapa 2.4.3
Para encontrar o intervalo da segunda parte, identifique onde o interior do valor absoluto é negativo.
Etapa 2.4.4
Na parte em que é negativo, remova o valor absoluto e multiplique por .
Etapa 2.4.5
Escreva em partes.
Etapa 2.5
Encontre a intersecção de e .
Etapa 2.6
Divida cada termo em por e simplifique.
Etapa 2.6.1
Divida cada termo em por . Ao multiplicar ou dividir os dois lados de uma desigualdade por um valor negativo, inverta a direção do sinal de desigualdade.
Etapa 2.6.2
Simplifique o lado esquerdo.
Etapa 2.6.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.6.2.2
Divida por .
Etapa 2.6.3
Simplifique o lado direito.
Etapa 2.6.3.1
Mova o número negativo do denominador de .
Etapa 2.6.3.2
Reescreva como .
Etapa 2.6.3.3
Multiplique por .
Etapa 2.7
Encontre a união das soluções.
ou
ou
Etapa 3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4